

Videogame and Entertainment Industry Standard Sound Design Techniques
and Architectures for Use in Videogames, Virtual Environments and Training

Systems

Russell Shilling, Ph.D.
Eric Krebs

MOVES Institute
833 Dyer Road, Room 254
Naval Postgraduate School
Monterey, CA 93943-5118

Phone: (831) 656-2543
Fax: (831)656-2595

rdshilli@nps.navy.mil

Keywords: audio, OpenAl, DirectSound3D, virtual environments, sound design, audio architectures,

Spatialized sound, videogames, entertainment, America’s Army, VoIP, live voice

Videogame and Entertainment Industry Standard Sound Design Techniques
and Architectures for Use in Videogames, Virtual Environments and Training

Systems

Russell Shilling, Ph.D.
Eric Krebs

MOVES Institute
833 Dyer Road, Room 254
Naval Postgraduate School
Monterey, CA 93943-5118

(831) 656-2543
rdshilli@nps.navy.mil

ABSTRACT: The design and development of auditory interfaces in virtual environments has lagged behind visual
interfaces. However, the auditory interface should be considered an essential component to VE that adds ambience,
emotion, and a sense of presence to the simulation. The entertainment industry has long recognized the importance of
sound to add these perceptual elements to film and videogames. As a result, the film industry has devoted many of its
resources to developing techniques for producing sound effects and ambiences that evoke emotional responses and
immerse the viewer in the film. Many of these techniques can be applied to simulations and virtual environments. The
current paper will discuss how auditory researchers at the MOVES Institute have applied these sound design techniques
used by the entertainment industry for creating highly immersive environments in both their videogame efforts and in
high-end simulations. In order to implement this type of sound design, the audio architecture must be capable of
producing a complex, spatialized auditory environments. Currently, videogame development tools usually offer more
flexibility and control in developing auditory environments than tools used for creating virtual environments. Thus, we
look at the use of OpenAL, DirectSound, DirectSound3D, and EAX as alternatives to more expensive audio servers.
Additionally, on the high-end, we examine Ausim3D’s Goldserver Audio System for employment of low-latency live
voice in virtual environments.

1. Introduction

 The MOVES Institute in Monterey, CA has the unique
distinction of being a center for high-end simulation as
well as professional videogame production. In May,
the MOVES Institute in conjunction with the U.S.
Army announced the videogame, “America’s Army:
Operations.” America¹s Army: Operations nicely
demonstrates the MOVES Institute’s prowess in
combining entertainment technologies with research
and development for defense. Veteran artists,
designers, and programmers were recruited from the
videogame industry. On the research side, graduate
students from all branches of the U.S. military and a
number of allied countries worked with MOVES
faculty to formulate the theory that propels America¹s
Army into new gaming regions. Practical support from
the Army included unprecedented access to posts,
equipment, and subject-matter experts. For the audio
design portion, we turned to the entertainment industry
for advice. In the process, our software has been EAX
and Dolby Digital certified. Meanwhile these same
techniques are being incorporated in our own in-house
developed software efforts for creating high-end
simulations.

The entertainment industry has long recognized the
importance of properly designing sound effects and
sound systems to add realism, emotion, and a sense of
immersion to film and to video games. As a result, the
film industry has allocated significant resources to
developing techniques for the design of sound effects
and ambient sounds that evoke a sense of realism and
manipulate the emotional response of the viewer. It is
difficult to imagine that all sound heard in the battle
scenes of “Saving Private Ryan” were added in layers
after the film was shot, yet they were. In the opening
scenes depicting the Normandy invasion, the audio
effects, including the actor’s voices, are completely
synthetic; added to the film after it was shot. The
audio effects were spatialized using a surround sound
system to immerse the audience in the sound field.

Even though the medium is non-interactive, a movie
with a properly designed audio track represents a better
example of an auditory virtual environment than most
high-end simulations developed by industry and the
military. Although film is a non-interactive medium
(for most people), videogames are another matter.
These same audio design techniques have been adapted
by the electronic gaming industry to add both realism
and excitement to their titles. Although, not reported

here, current research in our laboratory is aimed at
deriving objective rather than subjective measures for
the contributions these techniques add to virtual
environments using a variety of techniques including
psychophysical measurement, electrophysiology and
even basic memory experiments [9]. These
measurement techniques are leading to new methods
for assessing immersion in virtual environments.

There are many lessons to be learned from the
entertainment industry. First is in the field of sound
design. One theme has emerged from discussions with
professional sound designers, producers, and audio
engineers. Sound is emotion! Anyone in the audio
industry will tell you this. A visual display lacking a
properly designed audio component will be
emotionally flat. Sound design for interactive
environments is not a trivial matter in either its
importance or implementation. As will be discussed,
sound design needs to be a carefully planned process.

The second lesson to be learned is in the way we can
implement an enriched audio environment in an
interactive simulation. Traditionally, spatial audio in
high-end simulation has been a very expensive
proposition. Audio servers can run from $20k to well
over $50k, putting them out of the reach of many
projects. Our laboratory has been comparing the
performance of these high-end systems with the
performance offered by off-the-shelf and open source
technologies. The second part of this paper will
explore these “low-end”, “low-cost” architectures for
presenting Spatialized sound while still creating a
highly immersive auditory experience.

2. Sound Design

The first rule of sound design is, “see a sound, hear a
sound.” [3] Unless we supply the appropriate
background sounds (machinery, artillery, animals,
footsteps, etc) the participant will probably feel
detached from the action. Footsteps sound differently
when you’re in the grass as opposed to the pavement or
in a hallway. Likewise, the sound of the action of an
M-16 changes depending on whether you’re located
inside a building or outside. Explosions and other
concussive events are not just auditory; they are tactile,
full-body experiences. Vehicle noise is very specific to
a particular vehicle and becomes part of the
expectation for using that device. These are the types
of things that create immersion, ambience and emotion
in movies, and the same should hold true in virtual
environments. Four of the audio elements we’ve been
focusing on in our development of virtual
environments and videogame based simulations are

footsteps, vehicular sounds, weapons, and general
ambience.

2.1 Footsteps

As we are discovering in our military videogame
development activities, these techniques should be
applicable to the types of virtual environments and
simulations currently under development by military
establishments. The entertainment industry employs
foley actors to create footsteps for films. Footsteps are
a rather small detail that sound designers believe (an
unanswered empirical question) adds to the sense of
presence in a film, even in conditions where footsteps
may not actually be heard in the real world. Current
game editors allow us to create the sound of footsteps
on different terrains and textures. This should be a de
facto standard for all VE development for dismounted
infantry. In fact, it has been our experience that the
implementation of audio in the editors of gaming
engines are far more advanced than in so-called, “high-
end simulations”.

2.2 Vehicular Sounds

Likewise, vehicle noises should be as accurate and as
detailed as possible. Recordings and sound levels
should be available for sounds inside, behind, and in
front of the vehicles [3]. For instance, for various
military amphibious vehicles, the sounds of wheels on
different terrain surfaces may be very important for
creating a sense of presence. Details such as engine
idle, engine revs, and gear changes may need to be
included, both in the water and on land. Our laboratory
has recently applied professional recording techniques
for creating audio for an LCAC using professional
sound designers and recording engineers to excellent
results. Reproduced over a high quality audio system,
the result is very accurate and very compelling. Other
platforms will soon be following suit.

2.3 Weapons Sounds

Weapon sounds provide a particularly difficult
challenge for simulations designers. One of the first
things you will hear from customers of military
simulations is that they want the weapons to sound
accurate. Practically speaking, this is impossible.
Although the mechanisms and actions of weapons
(foley) can be accurately recorded and replicated, the
actual sound of a weapon firing is very problematic.
First, microphones cannot capture the full dynamic
range of the majority of concussive weapons.
Likewise, commercial speaker and headphone systems
cannot produce this dynamic range. Therefore, an M16
will never sound exactly like an M16. From

discussions with various videogame companies and
sound designers for films, attempts to use accurate
recordings of weapons result in an uninteresting and
emotionless perception of the auditory event. Listeners
complain that they don’t sound realistic. There are
several solutions to this problem. One solution is to
record weapons with multiple tape recorders using
different types of microphones that accentuate different
parts of the frequency spectrum, then mix the
recordings together [3]. This tends to be expensive and
tedious since you need two sets of expensive recording
gear. For smaller budgets, the solution is to dive into
your sound effects libraries and look for weapons
sounds that combine the audio attributes you desire,
then mix them together [3]. These techniques produce
effects that are “hyper-real” [1]. The sound of an
actual M-16 firing may not sound as exciting as that of
an M-16 mixed with other weapons to produce
something more compelling. Remember, the best you
can accomplish is producing a gunshot that sounds
SIMILAR to the actual weapon. The worst thing you
can do is simply use your editing software to equalize
the audio and boost the bass response. A large part of
the emotional response is due to the high frequency
crack of the weapon and not, as many people believe,
the low frequency boom.

2.4 General Ambience

The audio element which is probably the most
important aspect of evoking the sense of immersion in
a VE is ambient sound. It’s also the least likely to be
implemented. The sound of a breeze, a computer fan,
an air conditioner, or an electrical generator may not be
obvious to the main training focus of a simulation, but
they will contribute to the sense of presence or
immersion. It may seem like a trivial point at first, but
we do not live in a silent world. We create surrealistic
unreality in VE by failing to include these basic cues.
We don’t notice them when they are there. But, we do
notice their absence. One of the things we are currently
attempting to demonstrate is that these ambient sounds
do, in fact, impact performance and training in VE.

3. Sound Libraries vs Custom Recording

There are some very fine prepackaged professional
audio libraries. Good libraries are not cheap, but worth
the expenditure. We’ve found that sound libraries
provide excellent weapons foley, footsteps, and a wide
variety of vehicles. They do not typically do a fantastic
job for explosions and weapon firing. The sound
designer will have to do significant amounts of work to
get these sounds to have a significant impact on the
listener. Not surprisingly they also lack the more
esoteric weapons platforms and vehicles. Hence our

recent foray to record an LCAC. If you do not have
your needed sound in a library, you will either have to
synthesize your sounds from recordings of similar
equipment, or go out and record it yourself.

Detailed instructions for obtaining these recordings are
readily available from experts and publications on the
topic of “sound in film” [1,2]. However, be warned
that recording audio is as much of an art as a science.
Digital recording is not always better, especially when
recording explosions. There is a dizzying array of
microphones, each with different frequency response
and directionality. Just because you’ve gone out and
bought a $1500 digital tape recorder, does not mean
you’re ready to start recording effects. So, be advised
that recording equipment can be very expensive, and
you’re going to have to learn to use it properly. Our
laboratory is currently using a Tascam DA/P1, which is
an excellent quality digital recorder commonly used as
a field recorder and is capable of handling professional
quality microphones. We will be purchasing (or
leasing) an analog recorder in the near future to handle
the weapons sounds mentioned earlier.

If you don’t want to spend large amounts of time
learning the art of recording and audio postproduction
and you have a limited budget, it might be better and
cheaper to hire a professional to do the work for you.
The bottom line is that sound design is a very complex
issue and deserves far more attention in the
development of virtual environments and training
systems than it is currently awarded.

4. Videogame Audio Architectures

When creating immersive audio for videogames, there
are several techniques (or combinations) that the
designer and programmers has to create spatial sound.
Although these technologies are still much cruder than
what we need to produce and extremely realistic
auditory environment, most videogame development
platforms give the designer far more options than the
average virtual environments development platform.

4.1 OpenAL

OpenAL is a cross-platform audio API designed to
provide a software developer with a simple interface to
a spatialized audio capability. It is in the public
domain and is open source code. The primary force
behind the development of OpenAL is Creative Labs,
who use it as the primary audio programming interface
for Win32, UNIX, and Linux platforms (Creative does
not currently support Mac OS X and provides only
minimal support for Mac OS 9 and earlier).

OpenAL is a platform-independent “wrapper” API for
whatever platform it is being implemented on. For
example, on a Wwin32 platform, OpenAL accesses the
DirectSound or DirectSound3D driver. Platform
discovery is automatic in OpenAL.

A few of OpenAL’s capabilities include:
a. Audio Contexts - a context in OpenAL can best be
described as an audio “situation” - an environment
consisting of a listener and sounds. OpenAL, like all
audio programming API’s only support one context per
machine, except in those circumstances where a single
computer contains multiple sound cards. In those
cases, multiple contexts can be implemented for each
sound card

b. Spatialized Audio - OpenAL supports one listener
per context, and as many sounds as the host machine
memory will support. OpenAL will generally manage
whether sounds are processed on the sound card (in
hardware) or on the host CPU (in software)
automatically. The priority is to utilize hardware assets
(buffers) first, followed by software. Most sound cards
support between 16 and 64 hardware-processed,
simultaneously playing sounds. Spatialization of audio
is accomplished by constructing buffers of sound data -
OpenAL currently supports multiple audio formats,
including PCM wave files and MP3 formatted data.
The data is loaded into memory through a simple API
call, and the API returns a handle to the data for
subsequent playing or looping. The developer has
control over the how the sound file is played; playing
looping, stopping and restarting, rewinding are all
inherent capabilities. Spatialization is accomplished
through a simple positioning method that is source-
specific for each buffer. The single listener can also be
position independently of each sound source. One
aspect of OpenAL that is different from other audio
API’s is the separation of the audio source from the
audio data. A source is a buffer that can be positioned
- it is not tied directly to any single wave file or sound -
the source can be positioned and any wave file can be
played through that source. While this may complicate
programming for a beginning audio programmer, this
distinction is very powerful.

c. Audio Rolloff and Attenuation - OpenAL provides
for audio rolloff (attenuation of audio sources based on
distance from the listener) through three different
attenuation models - inverse distance, inverse distance
clamped, and exponential. Selection of rolloff model is
left to the developer. Manual attenuation of sources
can be accomplished through volume settings specific
to each source.

d. Static and Streaming Audio - OpenAL supports
both static buffers (buffers whose data is loaded
completely and stored in memory) and streaming
buffers (buffers that contain only a portion of the audio
data at creation, but continually read new chunks of
data as specified intervals). Streaming audio permits
the application developer to play extremely large wave
files without the memory of CPU penalty of storage
and retrieval. Control over the “feeding” of audio data
is exposed to the developer.

e. Pitch Bending or Frequency Shifting - OpenAL
supports frequency modification of audio sources at
execution time. This is especially beneficial when
modeling sounds such as automotive engines - the
pitch of the engine sound can be modified to reflect
change in velocity.

f. Doppler Processing - OpenAL supports audio source
Doppler effects. OpenAL does not calculate audio
source velocity and automatically modify source
frequencies for the Doppler effect, but manual setting
of velocity parameters will permit Doppler effect
processing. One shortcoming to be mentioned here is
that, in its current release, OpenAL does not permit
setting of a reference velocity for Doppler calculations.
OpenAL has “hard-coded” the speed of sound at sea
level (in meters/sec) as its reference velocity. This
restrains the developer from being able to amplify the
Doppler effect. While from a physically-based
modeling perspective a developer may not be inclined
to change the physical properties of a sound,
developing audio software from an entertainment
perspective may require certain audio effects to
amplified or diminished. OpenAL does not support
this. A typical example is that of a train approaching
and departing a listener’s position.

Combining all of the above capabilities into a single,
platform-independent API makes OpenAL extremely
useful. OpenAL is implemented in many PC games,
including “America’s Army: Operations” developed at
the Naval Postgraduate School which uses Epic’s
Unreal Warfare engine. One significant limitation of
OpenAL as an audio API is that it does not directly
support live voice audio. Live voice is a critical
component of many applications, such as training
simulators or PC games involving multiple participants
distributed across a network. Live voice audio can be
accomplished with OpenAL, but it would require the
use of 3rd -party API’s for voice capture and encoding,
network transmission of voice data, and decoding.
Once decoded, the voice data could be used as an input
to an OpenAL streaming buffer and position
accordingly to provide a spatialized voice effect.

4.2 DirectSound, DirectSound3D and DirectMusic

DirectSound and DirectSound3D are audio
programming API’s produced by Microsoft. Originally
released as individual API’s, they are now integrated
and released as a core component of Microsoft’s
DirectX programming suite, currently in release
version 8.1. DirectMusic, released for the first time in
DirectX 8.0, is a new audio programming API that both
wraps DirectSound and introduces several new
functionalities.

Instead of re-hashing capabilities of DirectSound that
are similar to OpenAL, the following will point of
differences with OpenAL and additional capabilities
provided by DirectSound:

a. Limited to Wave Files - DirectSound only supports
wave file PCM data in its current release. While wave
files are the audio programming industry’s format of
choice, this limitation excludes using other types of
sound data, and may require programmers to obtain
additional software capable of converting audio files to
PCM format.

b. Integration of Data and Sources - DirectSound
tightly integrates sound data and the buffer through
which it will be played. A static buffer can only be
loaded with audio data once. It can be played and
repositioned, as many times as the developer desires,
but it can never accept new data. In OpenAL, different
audio data could be played though the same buffer.
For streaming buffers, functionality of OpenAL and
DirectSound is equivalent - audio data can be
continually fed into a streaming buffer and replaced.

c. Audio Effects - DirectSound supports seven
different types of audio effects processing directly
within its API - echo, gargle, compressor, chorus,
distortion,flanger, and a limited reverb. While these
effects are relatively simple and not extremely flexible
(such as those found in EAX - see below), they do
provide the programmer with access to a limited range
of audio effects without having to import another API;
examples include room echo and room reverberation

d. Live Voice - perhaps the single greatest advantage to
DirectSound over any other API is its integration of
live voice. For those applications requiring live voice,
DirectX contains another core module, called
DirectPlay, which supports networking on a client-
server or peer-to-peer structure, which contains a sub-
module named DirectVoice. DirectVoice integrates
DirectPlay’s networking with DirectSound’s 3D
spatialized audio capability to provide a spatialized live
voice capability to any programmer. Currently,

DirectVoice will support up to 64 live voices in a
session. An example of this would be multiple
participants in a virtual world communicating with
their voice positions concurrent with their avatar
positions.

The other capabilities of OpenAL are similar to those
found in DirectSound. DirectMusic is an audio
programming API designed to support musicians more
than application developers, but has added capabilities
that game or simulation developers may benefit from
using. Some of these include:

a. Multiple Audio Formats - DirectMusic supports
multiple audio file formats, including MP3, wave an
others.

b. DLS (Downloadable Sounds) - DLS is a standard
for integrating several audio files for synchronized
playback. While both OpenAL and DirectSound can
shift frequencies, audio artifacts and distortions when
the shift is far away from the original frequency will
become apparent. DLS permits a programmer to use,
for example, three audio files - one for low frequency
sounds, one for intermediate frequency sounds and one
for high frequency sounds, and then overlay them as
necessary during playback. This precludes high- and
low-pitch shifted artifacts and can produce much more
realistic sounds in this type of scenario.
Modeling vehicle engines provides an excellent
example of the power of this feature. Three different
audio files could represent low RPM, intermediate
RPM, and high RPM. Synchronized overlay and
playback would preclude frequency-shifting artifacts
and produce a smooth sounding engine.

c. Separation of Buffers from Audio data -
DirectMusic uses the OpenAL model of separating a
source from its data. In DirectMusic, a source
(AudioPath) can be positioned, repositioned and
manipulated in whatever fashion the developer desires.
Audio data is then placed on the AudioPath when it is
time to play.

d. Audio Scripting - DirectMusic supports scripting
long segments of sounds and permits the developer to
introduce variability. This capability might enhance
training simulations where ambient sound tracks could
be developed and varied from run to run, without have
to re-program audio sequences between each
execution. Like OpenAL, DirectX (either
DirectSound or DirectMusic) is a full-feature audio
programming API capable of delivering an exciting
audio experience to the user.

4.3 EAX

EAX Audio Extensions is an audio API produced by
Creative Labs to induce numerous types of audio
effects, including reverberation, occlusion, obstruction,
and exclusion. The goal of the API is to produce
effects equivalent to modeling the acoustics of rooms,
buildings, and other audio environments. It does this
without the expensive CPU requirements of actually
modeling geometry and audio ray tracing. EAX 2.0 is
the current release version, and 3.0 is close to public
release. EAX works as an extension to an underlying
audio API - EAX is currently configured to work with
both OpenAL and DirectX.

A few of EAX Audio Extension’s capabilities include:

a. Audio Environments - EAX 2.0 supports both
global and source-specific audio effects. Global effects
are applied to the single listener in the environment,
while source specific effects are independently applied
to audio sources. EAX 2.0 permits the application
developer to select from one of 26 defined preset
environments for global effects, and five high level
parameters to modify those presets to obtain the type of
effect the developer desires. Without going into
specific parameters that can be modified, EAX
supports, though its methods and variables, modifying
parameters to:

1. Set or modify room size
2. Set or modify room width or depth
 3. Set or modify room materials - for example, a
hardwood floor will reflect a greater amount of sound
energy than a carpeted floor

 4. Set or modify room height
Each of these effects may require multiple parameter
changes or method calls, but each is obtainable.

b. Audio Source Effects - as audio sources are moved
in the environment, EAX can construct three main
types of effects to simulate how those sources would
interact with a listener:
 1. Occlusion - occlusion is the effect of a listener
and an audio source being in different rooms.
Depending on the type of material separating the
listener from the source (which is fully modifiable in
EAX), a variable amount of sound energy will
penetrate the separator and arrive at the listener. EAX
permits setting of various types of wall or room
material.
 2. Exclusion - exclusion is the effect a listener
hears when the audio source is not in the same

environment but is heard through a portal, such as a
door or a window. Exclusion is an attenuation of
reflected and reverberated sound energy while the
direct path energy is relatively unaffected. EAX
supports modification of parameters to achieve
different effects for door or window size.
 3. Obstruction - obstruction refers to the effect
where the listener and the sound source are in the same
environment, but an object is between the two. In this
case, direct-path sound energy is attenuated, especially
at high frequencies, and reflected and reverberated
sound is left untreated.

All of these three effects have multiple parameters that
must be set to achieve the desired overall effect.

EAX can be implemented in any audio application.
We would recommend the use of EAX’s Unified
Interface to most program developers - the Unified
Interface provides a single API for all versions of
EAX, and even will disable the effects if the host
machine’s sound card does not support EAX without
terminating the application.

The most important issue to understand when using
EAX is that it does not employ true “room acoustics”.
It is strictly a numerical, parameter-based API for
achieving certain effects. Experience suggests that
numerous iterations of parameter tweaking are required
to achieve integrated and synchronous effects for an
interactive application where the listener and sources
are in constant movement.

In conclusion, both OpenAL and DirectX are
extremely powerful audio API’s capable of delivering a
rich audio experience. When combined with EAX,
either can come quite close to simulating an audio
experience that rivals reality. DirectX module API’s
are much more difficult to understand and comprehend,
and result in a very steep learning curve for beginning
programmers.

Our recommendation is that for beginning
programmers, OpenAL provides an easy to understand
API that can familiarize one with the basic of audio
programming yet still create a dynamic audio
environment. If the application requires live voice,
DirectX’s DirectSound, DirectPlay, and DirectVoice
offer the only integrated API available.

5. Ausim3D Goldserve

For multi-participant virtual environments, especially
those involving teams or team training, the auditory
environment must at least address how players will
communicate with each other. The most natural form

of communication amongst team members is voice
communication, just as it would be in the real world.
Adding live voice to virtual environments is expensive
and problematic. The biggest obstacle facing a virtual
environment developer who wants to incorporate live
voice is latency. The DirectX suite mentioned above
supports live, spatialized voice, but it faces significant
latency issues, generally on the order of 200 – 500 ms,
most of which is inherent in Voice over Internet
Protocol (VoIP) applications. Latency in voice
communications can be highly detrimental to
immersion and the sense of presence.
 One solution is the utilization of Ausim3D’s
Goldserve Gold Series Audio Localizing Server
System. The Goldserve is capable spatializing live
voice with a measured latency of 5 – 10 ms, virtually
imperceptible to the participants. Just as with DirectX
and OpenAL, distance attenuation, rolloff, and source
directivity are additional capabilities. Under testing
and examination at the MOVES Institute, initial
experiments involving multiple participants in
spatialized, live voice virtual environments indicate
participants greatly favor the Ausim3D Goldserve to
DirectX and other typical VoIP applications.
 Future upgrades to the Ausim3D Goldserve will
implement a broad range of room acoustic modeling
capabilities. When these upgrades are complete, the
Goldserve, combining spatialized, live voice with a
run-time room acoustics processing capability, will be
the premier audio system for developing fully
interactive, multi-participant virtual environment
training systems and simulations.

5. References

[1] Holman, T. (1997). Sound for Film and

Television. Boston, MA: Focal Press.

[2] Holman, T. (2000). 5.1 Surround Sound Up and

Running. Boston, MA.: Focal Press.

[3] Yewdall, D. (1999). Practical Art of Motion
Picture Sound. Boston, MA: Focal Press.

[4] Letowski, T., Karsh, R., Vause, N., Shilling, R.,
 Ballas, J., Brungert, D. & McKinley, R. (2001).
 Human Factors Military Lexicon: Auditory
 Displays. ARL Technical Report, ARL-TR-
 2526; APG (MD).

[5] Shilling, R.D., Shinn-Cunningham, B. (2002).
 Virtual Auditory Displays. Virtual
 Environments Handbook, Kaye Stanney,. New
 York, Erlbaum.

[6] Langendijk, E. H., and Bronkhorst, A.W.
 (2000). Fidelity of three-dimensional-sound
 reproduction using a virtual auditory display.
 Journal of the Acoustical Society of America
 107(1): 528-537.

[7] THX Certified Training Program (2000).
 Presentation Materials. June 20-23. San
 Rafael, CA.

[8] International Telecommunications Union.

(1994). Multi-channel Stereophonic Sound
 System With and Without Accompanying

Picture. Recommendation ITU-R BS.775-1.
 Hendrix, C. and Barfield, W. (1996). The sense

of presence in auditory virtual environments.
Presence 5(3): 290-301.

[9] Sanders, R., and Scorgie, R. (2002). The
 Effect of Sound Delivery Methods on the
 User’s Sense of Presence in a Virtual
 Environment. Thesis Research. Naval
 Postgraduate School, Monterey, CA.

